a dihedral angle of $2.7(20)^{\circ}$. The Fe atom lies 1.641 (1) \AA from the plane of Cp 1 (C1-C5) and 1.647 (1) \AA from the plane of Cp 2 (C14-C18). $\mathrm{Fe}-\mathrm{C}$ distances range from $2.030(3)-2.042(3) \AA$. The two Cp rings are nearly eclipsed, forming a twist angle of 10.4 (3) ${ }^{\circ}$ (average of five $\mathrm{C}-\mathrm{Cp}-\mathrm{Cp}-\mathrm{C}$ torsion-angle magnitudes, where Cp are ring centroids). The Cpl $\mathrm{Fe}-\mathrm{Cp} 2$ angle is 177.8°. Bulky substituents directly bound to the ferrocene moiety have been reported with larger distortions from ideal geometry. The crystal structure of 1-(1-hydroxy-1-phenylpropyl)-2,1'-trimethyleneferrocene (Lecomte, Dusausoy, Protas, Moïse \& Tirouflet, 1973) shows a $\mathrm{Cp} 1-\mathrm{Fe}-\mathrm{Cp} 2$ angle of 170°. Similarly, $1,1^{\prime}, 3,3^{\prime}$-tetra-tert-butylferrocene (Kaluski, Gusev, Kalinin \& Struchkov, 1972) has a $\mathrm{Cp} 1-\mathrm{Fe}-\mathrm{Cp} 2$ angle of 173°.

The two fused oxacyclohexane rings which comprise the lactol exhibit typical chair conformations. There is probably a favorable dipolar interaction which accounts for close interaction $[3.515(2) \AA$] between O 1 and the positively charged Fe atom. The $\mathrm{Fe}-\mathrm{Cl}-$ C6-O1 torsion angle of the title compound is 54.5 (4) ${ }^{\circ}$, whereas 1-(1-hydroxy-1-phenylpropyl)-2,1'trimethyleneferrocene contains an analogous torsion angle of 42.5 (14) ${ }^{\circ}$ (Lecomte et al., 1973).

The hydroxy group O 2 forms two independent hydrogen-bonding contacts about point-symmetry elements with O 2 of other molecules, 2.804 (4) \AA to that at $1-x, 1-y, 1-z$ and 2.838 (4) \AA to that at $1-x, y$, $\frac{1}{2}-z$, with the H atom half-populated in each. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles are $c a 153^{\circ}$ for the hydrogen bond disordered
about the center, and $c a 170^{\circ}$ for that disordered about the twofold axis.

Acknowledgement is made to the Research Corporation for support of this research.

References

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Derome, A. E. (1987). Modern NMR Techniques for Chemical Research, pp. 144-145. New York: Pergamon Press.
Frenz, B. A. (1985). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Jones, N. D., Marsh, R. E. \& Richards, J. H. (1965). Acta Cryst. 19, 330-336.
Kaluski, Z. L., Gusev, A. I., Kalinin, A. E. \& Struchkov, Yu. T. (1972). Zh. Strukt. Khim. 13, 888-891.

Kealy, T. J. \& Pauson, P. L. (1951). Nature (London), 168, 1039-1040.
Kulkarni, S. U., Rao, C. G. \& Patil, V. D. (1982). Heterocycles, 18, 321-326.
lecomte, C., Dusausoy, Y., Protas, J., Moïse, C. \& Tirouflet, J. (1973). Acta Cryst. 29, 488-493.

Miller, S. A., Tebboth, J. A. \& Tremaine, J. F. (1952). J. Chem. Soc. pp. 632-635.
Rausch, M. D. \& Ciappenelli, D. J. (1967). J. Organomet. Chem. 10, 127-136.
Rinehart, K. L. Jr \& Curby, R. J. (1957). J. Am. Chem. Soc. 79, 3290-3291.
Rosenblum, M. (1953). PhD Dissertation, Harvard Univ., USA.

Structure of Di[bis(1,4,7,10-tetraoxacyclododecane)sodium] Tetrachlorodioxouranate(VI)-Methanol (1/2), $\left[\mathrm{Na}\left(12\right.\right.$-crown-4) $\mathbf{2}_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right] .2 \mathrm{MeOH} *$

By Robin D. Rogers
Department of Chemistry, Northern Illinois University, DeKalb, IL 60115, USA

(Received 27 October 1987; accepted 21 December 1987)

Abstract

Na}\left(\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{4}\right)_{2}\right]_{2}\left[\mathrm{UCl}_{4} \mathrm{O}_{2}\right] \cdot 2 \mathrm{CH}_{4} \mathrm{O}, \quad M_{r}=\) 1147, orthorhombic, $P b c a, \quad a=14.393$ (3), $\quad b=$ 23.223 (5), $c=14.909$ (3) $\AA, V=4983.0 \AA^{3}, Z=4$, $D_{x}=1.53 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo K $\alpha)=0.71073 \AA, \quad \mu=$ $33.8 \mathrm{~cm}^{-1}, F(000)=2472, T=293 \mathrm{~K}$, final $R=0.030$ for 2097 observed $\left[F_{o} \geq 5 \sigma\left(F_{o}\right)\right.$] reflections. The cations have no crystallographically imposed symmetry and consist of Na ions coordinated to all four O atoms of two unique crown ethers in a square antiprismatic

^[* f-Element/Crown Ether Complexes 18. Part 17: Rogers, Voss \& Etzenhouser (1987).]

geometry. The $\mathrm{Na}-\mathrm{O}$ separations average 2.49 (2) \AA. The tetrachlorodioxouranate(VI) dianions are pseudooctahedral and reside on crystallographic centers of inversion. The bonding parameters are normal. The solvent molecules are hydrogen bonded to the Cl atoms of the anions and are disordered.

Introduction. In the presence of benzo-15-crown-5, the slow aerial oxidation of a solution of UCl_{3} in tetrahydrofuran (THF) and incorporation of Na^{+}from the glass container resulted in the crystallization of [Na (benzo-15-crown-5)] $\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]$, which has been © 1988 International Union of Crystallography
structurally characterized (Moody \& Ryan, 1979). A similar oxidation reaction occurs with UCl_{4} and we have studied this reaction in $3: 1$ mixtures of acetonitrile and methanol in the presence of crown ethers such as 18 -crown-6, dibenzo-18-crown-6, 15-crown-5, benzo- 15 -crown-5, and 12 -crown- 4 (Rogers, Kurihara \& Benning, 1987). In each case, crystallization resulted from the production or abstraction of a suitable counterion: either the ammonium ion in $\left[\left(\mathrm{NH}_{4}\right)(15-\right.$ crown-5) $\left.]_{2}\right]_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right] .2 \mathrm{CH}_{3} \mathrm{CN}, \quad\left[\left(\mathrm{NH}_{4}\right)\right.$ (benzo-15-crown-5) $\left.{ }_{2}\right]_{2}\left[\mathrm{UCl}_{6}\right] .4 \mathrm{CH}_{3} \mathrm{CN}$ and $\left[\left(\mathrm{NH}_{4}\right)\right.$ (dibenzo-18-crown-6) $]_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ or an Na ion as found in the title complex. This latter complex is quite different from [Na (benzo-15-crown- 5) $]_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]$ and this difference is the subject of this report.

Experimental. The synthesis of the title complex has been reported (Rogers, Kurihara \& Benning, 1987). Greenish-yellow plates grown from acetonitrile: methanol (3:1). D_{m} not determined. Crystal $0.13 \times 0.33 \times$ 0.38 mm . Enraf-Nonius CAD-4 diffractometer, graphite-monochromated Mo $K \alpha$. Cell constants from setting angles of 25 reflections $\left(\theta>20^{\circ}\right)$. Three standard reflections, no intensity variation. Corrections for Lorentz-polarization effects and for absorption (empirical), range of relative transmission factors $53 / 100 \%$. $\theta_{\max }=25^{\circ} ; h 0$ to $12, k 0$ to $20, l 0$ to 12. 4871 reflections measured, 2097 independent observed reflections [$F_{o} \geq 5 \sigma\left(F_{o}\right)$]. Structure solved via Patterson function and subsequent difference Fourier techniques. Crown-ether H atoms placed $0.95 \AA$ from the bonded C atom with a fixed isotropic thermal parameter $B=5.5 \AA^{2}$ and allowed to ride with the $\mathrm{C}-\mathrm{H}$ distance fixed. Two disordered orientations were observed for the unique solvent molecule. The two orientations were refined in alternate least-squares cycles at 50% occupancy with isotropic temperature factors only. Solvent H atoms were not included. Scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974); structure refined with SHELX76 (Sheldrick, 1976). $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized, weights $=\left[\sigma\left(F_{o}\right)^{2}+0.00003 F_{o}{ }^{2}\right]^{-1}, \quad 275$ parameters varied. $P=0.030, w R=0.030, S=1.7 . \Delta / \sigma$ in final least-squares refinement cycle $<0.01, \Delta \rho<0.9 \mathrm{e}^{-3}$ in final difference map.*

Discussion. Fractional coordinates and $U_{\text {eq }}$ values are given in Table 1, distances and angles in Table 2, and an ORTEP illustration (Johnson, 1976) of the formula

[^1]Table 1. Final fractional coordinates for $[\mathrm{Na}(12-$ crown-4) $)_{2} l_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right] .2 \mathrm{MeOH}$

	x	y	z	$U_{\text {eq }}{ }^{*}\left(\AA^{2}\right)$
U	0.5000	0.5000	0.5000	0.035
$\mathrm{Cl}(1)$	0.5084 (2)	0.45462 (9)	0.3350 (1)	0.065
$\mathrm{Cl}(2)$	0.6729 (1)	0.4628 (1)	0.5291 (2)	0.062
Na	0.5596 (2)	$0 \cdot 1966$ (1)	0.4014 (2)	0.040
$\mathrm{O}(\mathrm{I})$	0.4557 (3)	0.4347 (2)	0.5424 (3)	0.049
$\mathrm{O}(2)$	0.6762 (3)	0.2666 (2)	0.3429 (4)	0.047
$\mathrm{O}(3)$	0.4947 (4)	0.2576 (2)	0.2773 (3)	0.046
$\mathrm{O}(4)$	0.4299 (3)	0.2563 (2)	0.4558 (4)	0.044
$\mathrm{O}(5)$	0.6121 (3)	0.2639 (2)	0.5208 (3)	0.047
O(6)	0.4410 (3)	0.1249 (2)	0.3476 (4)	0.047
$\mathrm{O}(7)$	0.6216 (3)	0.1379 (2)	0.2797 (3)	0.044
$\mathrm{O}(8)$	0.6963 (4)	0.1376 (2)	0.4514 (4)	0.052
$\mathrm{O}(9)$	0.5178 (4)	0.1258 (2)	0.5207 (3)	0.057
C(1)	0.6518 (5)	0.2851 (3)	0.2546 (5)	0.053
C(2)	0.5517 (5)	0.3046 (3)	0.2504 (5)	0.052
C(3)	0.4031 (5)	0.2744 (4)	0.3028 (5)	0.054
C(4)	0.3999 (5)	$0 \cdot 3000$ (4)	0.3946 (5)	0.056
C(5)	0.4514 (6)	0.2777 (4)	0.5430 (6)	0.056
C(6)	0.5441 (5)	$0 \cdot 3052$ (4)	0.5477 (6)	0.058
C(7)	0.6992 (5)	$0 \cdot 2886$ (3)	0.4948 (5)	0.053
C(8)	0.6982 (5)	0.3126 (3)	0.4017 (5)	0.054
C(9)	0.4682 (5)	0.1059 (4)	0.2598 (6)	0.054
C(10)	0.5687 (5)	0.0895 (4)	0.2530 (5)	0.054
C(11)	0.7161 (5)	0.1240 (4)	0.2983 (6)	0.060
C(12)	0.7290 (5)	0.0979 (4)	0.3884 (6)	0.062
C(13)	0.6791 (6)	$0 \cdot 1127$ (4)	0.5383 (6)	0.067
C(14)	0.5864 (6)	0.0848 (4)	0.5426 (6)	0.066
C(15)	0.4274 (6)	0.1026 (4)	0.5012 (6)	0.072
C(16)	0.4215 (6)	0.0796 (4)	0.4075 (6)	0.068
$\mathrm{O}(10) a^{\dagger}$	$0 \cdot 2494$ (9)	0.5483 (5)	0.7454 (9)	(iso)
C(17)a	0.161 (2)	0.583 (1)	0.715 (2)	(iso)
$\mathrm{O}(10) b$	$0 \cdot 1921$ (8)	0.5956 (6)	0.7659 (8)	(iso)
$\mathrm{C}(17) b$	$0 \cdot 222$ (2)	0.547 (1)	$0 \cdot 697$ (2)	(iso)

${ }^{*} U_{\text {eq }}=\left(U_{11}+U_{22}+U_{33}\right) / 3$.
\dagger Designations a and b refer to the two orientations of the disordered methanol moiety. Each was refined at 50% occupancy.

Table 2. Bond distances ((\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Na}(12-\text { crown }-4)_{2}\right]_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right] \cdot 2 \mathrm{MeOH}$

$\mathrm{U}-\mathrm{Cl}(1)$	2.678 (2)	$\mathrm{U}-\mathrm{Cl}(2)$	2.670 (2)
U-O(1)	1.763 (5)		
$\mathrm{O}(2)-\mathrm{C}(1)$	1.429 (9)	$\mathrm{O}(2)-\mathrm{C}(8)$	1.418 (9)
$\mathrm{O}(3)-\mathrm{C}(2)$	1.425 (9)	$\mathrm{O}(3)-\mathrm{C}(3)$	1.427 (9)
$\mathrm{O}(4)-\mathrm{C}(4)$	1.43 (1)	$\mathrm{O}(4)-\mathrm{C}(5)$	1.43 (1)
$\mathrm{O}(5)-\mathrm{C}(6)$	1.428 (9)	$\mathrm{O}(5)-\mathrm{C}(7)$	1.434 (9)
$\mathrm{O}(6)-\mathrm{C}(9)$	1.44 (1)	$\mathrm{O}(6)-\mathrm{C}(16)$	1.41 (1)
$\mathrm{O}(7)-\mathrm{C}(10)$	1.414 (9)	$\mathrm{O}(7)-\mathrm{C}(11)$	1.426 (9)
$\mathrm{O}(8)-\mathrm{C}(12)$	1.40 (1)	$\mathrm{O}(8)-\mathrm{C}(13)$	1.44 (1)
$\mathrm{O}(9)-\mathrm{C}(14)$	1.41 (1)	O 9)-C(15)	1.44 (1)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.51 (1)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.49 (1)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.48 (1)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.49 (1)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.50 (1)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.49 (1)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.49 (1)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.50 (1)
$\mathrm{O}(10) a-\mathrm{C}(17) a$	1.58 (3)	$\mathrm{O}(10) b-\mathrm{C}(17) b$	1.58 (3)
$\mathrm{Na}-\mathrm{O}(2)$	2.494 (6)	$\mathrm{Na}-\mathrm{O}(6)$	2.515 (6)
$\mathrm{Na}-\mathrm{O}(3)$	2.510 (5)	$\mathrm{Na}-\mathrm{O}(7)$	2.438 (6)
$\mathrm{Na}-\mathrm{O}(4)$	2.462 (6)	$\mathrm{Na}-\mathrm{O}(8)$	2.510 (6)
$\mathrm{Na}-\mathrm{O}(5)$	2.487 (6)	$\mathrm{Na}-\mathrm{O}(9)$	2.496 (6)
$\mathrm{Cl}(1)-\mathrm{U}-\mathrm{Cl}(2)$	88.86 (7)	$\mathrm{Cl}(1)-\mathrm{U}-\mathrm{O}(1)$	90.4 (2)
$\mathrm{Cl}(1)-\mathrm{U}-\mathrm{Cl}\left(1^{\prime}\right)^{*}$	180.0	$\mathrm{Cl}(1)-\mathrm{U}-\mathrm{Cl}\left(2^{\prime}\right)$	91.14 (7)
$\mathrm{Cl}(1)-\mathrm{U}-\mathrm{O}\left(1^{\prime}\right)$	89.6 (2)	$\mathrm{Cl}(2)-\mathrm{U}-\mathrm{O}(1)$	90.0 (2)
$\mathrm{Cl}(2)-\mathrm{U}-\mathrm{Cl}\left(2^{\prime}\right)$	180.0	$\mathrm{Cl}(2)-\mathrm{U}-\mathrm{O}\left(1^{\prime}\right)$	90.0 (2)
$\mathrm{O}(1)-\mathrm{U}-\mathrm{O}\left(1^{\prime}\right)$	180.0		
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(8)$	113.5 (6)	$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(3)$	113.4 (6)
$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{C}(5)$	113.5 (6)	$\mathrm{C}(6)-\mathrm{O}(5)-\mathrm{C}(7)$	114.0 (6)
$\mathrm{C}(9)-\mathrm{O}(6)-\mathrm{C}(16)$	113.7 (6)	$\mathrm{C}(10)-\mathrm{O}(7)-\mathrm{C}(11)$	112.9 (6)
$\mathrm{C}(12)-\mathrm{O}(8)-\mathrm{C}(13)$	113.4 (6)	$\mathrm{C}(14)-\mathrm{O}(9)-\mathrm{C}(15)$	115.3 (6)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	111.2 (6)	$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	107.9 (6)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	112.4 (6)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	107.0 (6)
$\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	112.9 (7)	$\mathrm{O}(5)-\mathrm{C}(6)-\mathrm{C}(5)$	108.4 (6)
$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)$	113.1 (6)	$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	107.2 (6)
$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(10)$	113.8 (6)	$\mathrm{O}(7)-\mathrm{C}(10)-\mathrm{C}(9)$	107.4 (6)
$\mathrm{O}(7)-\mathrm{C}(11)-\mathrm{C}(12)$	112.8 (6)	$\mathrm{O}(8)-\mathrm{C}(12)-\mathrm{C}(11)$	107.2 (7)
$\mathrm{O}(8)-\mathrm{C}(13)-\mathrm{C}(14)$	111.7 (7)	$\mathrm{O}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	109.0 (7)
$\mathrm{O}(9)-\mathrm{C}(15)-\mathrm{C}(16)$	111.9 (7)	$\mathrm{O}(6)-\mathrm{C}(16)-\mathrm{C}(15)$	108.3 (7)

unit and atom labeling in Fig. 1. Crown-ether coordination of the Na ions in the title complex results in complete charge separation. As seen in the cell-packing diagram (Fig. 2), the $\left[\mathrm{Na}(12 \text {-crown-4) }]^{+}\right.$ions form essentially organic layers with the $\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]^{2-}$ and hydrogen-bonded solvent molecules forming inorganic layers throughout the crystal. Similar charge separation was observed in $\left[\left(\mathrm{NH}_{4}\right)(15 \text {-crown- } 5)_{2}\right]_{2}\left[\mathrm{UO}_{2}-\right.$ $\left.\mathrm{Cl}_{4}\right] .2 \mathrm{CH}_{3} \mathrm{CN}$ and $\left[\left(\mathrm{NH}_{4}\right) \text { (benzo-15-crown-5) }\right]_{2}$ [UCl_{6}]. $4 \mathrm{CH}_{3} \mathrm{CN}$, but not in [$\left(\mathrm{NH}_{4}\right)$ (dibenzo-18-crown6) $]_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right] .2 \mathrm{CH}_{3} \mathrm{CN}$, or in $\left[\mathrm{Na}\right.$ (benzo-15-crown-5)] ${ }_{2}$ $\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]$. In the latter two complexes, the cation interacts with a crown ether on one side and the uranyltetrachloride anion on the other, either via electrostatic or a combination of electrostatic and hydrogen-bonding interactions. In the former two

Fig. 1. $\left[\mathrm{Na}(12 \text {-crown- } 4)_{2}\right]_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right] .2 \mathrm{MeOH}$. 50% probability ellipsoids for thermal motion. H atoms arbitrarily reduced.

Fig. 2. Cell packing revealing the overall layer-like structure.
complexes, acetonitrile molecules interact weakly with the Cl atoms of the dianions. If we assume that dibenzo-18-crown-6 is simply too large and too inflexible to form a simple $2: 1$ adduct with NH_{4}^{+}, the differences in the title complex and the closely related $[\mathrm{Na} \text { (benzo-15-crown-5) }]_{2}\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]$ may reflect the crystallization of the latter from a solvent (THF) which is not a hydrogen-bond donor.

The $\left[\mathrm{Na}(12 \text {-crown-4) }]^{+}\right.$cation is square antiprismatic with all eight O atoms coordinated to the metal and an average $\mathrm{Na}-\mathrm{O}$ separation of 2.49 (2) \AA. The $\mathrm{O} \cdots \mathrm{O}$ contacts forming the square planes (s) average 2.80 (1) \AA, while those between planes (l) average 3.38 (8) \AA. The s / l ratio is 0.83 and the Na^{+}ion is 1.50 and $1.52 \AA$ from the mean plane of $\mathrm{O}(2)-\mathrm{O}(5)$ (planar to within $0.009 \AA$) and $\mathrm{O}(6)-\mathrm{O}(9)$ (planar to within $0.006 \AA$), respectively. These values are almost identical to those found in four other structures containing this ion: $\left[\mathrm{Na}\left(12\right.\right.$-crown-4) $\left.{ }_{2}\right] \mathrm{Cl} .5 \mathrm{H}_{2} \mathrm{O}$ (van Remoortere \& Boer, 1974), $\left[\mathrm{Na}(12 \text {-crown-4 })_{2}\right] \mathrm{OH} .8 \mathrm{H}_{2} \mathrm{O}$ (Boer, Neuman, van Remoortere \& Steiner, 1974), [Na (12-crown-4) $\left.)_{2}\right]\left[\mathrm{ClO}_{4}\right]$ (Mason \& Eick, 1982) and $\left[\mathrm{Lu}\left(\mathrm{OH}_{2}\right)_{8}\right]\left[\mathrm{Na}(12 \text {-crown-4 })_{2}\right] \mathrm{Cl}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad$ (Rogers $\quad \&$ Voss, 1987).

As expected, the two unique crown-ether molecules exhibit approximate C_{4} symmetry as shown by the sequence of torsion angles starting with $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ of: $g^{-}\left(-60^{\circ}\right) a\left(180^{\circ}\right) g^{-} g^{-}$a $g^{-} g^{-}$a $g^{-} g^{-} a g^{-}$. As expected from steric repulsions when $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles are forced gauche in crown ethers, these angles are all greater than 70° (average $\sim 80^{\circ}$). The average internal-bonding parameters of the crown molecules are normal: $\mathrm{C}-\mathrm{O}=1.43$ (1), $\mathrm{C}-\mathrm{C}=1.49$ (1) \AA and $\mathrm{C}-$ $\mathrm{O}-\mathrm{C}=113.7(7)^{\circ}$. In the C_{4} conformation of 12 -crown-4, there are two types of C atoms. In the title complex, the angles at these positions average $\mathrm{O}-\mathrm{C} \alpha-\mathrm{C} \beta=107.8$ (7), $\mathrm{O}-\mathrm{C} \beta-\mathrm{C} \alpha=112.5$ (8) ${ }^{\circ}$.

The linear uranyl moiety and four Cl atoms give the U atoms in the anions an octahedral geometry. The $\mathrm{U}=\mathrm{O}$ separation is $1.763(5) \AA$ and the two unique $\mathrm{U}-\mathrm{Cl}$ distances average 2.674 (4) \AA. The two $\mathrm{U}-\mathrm{Cl}$ separations are slightly different at the 3σ level $[\mathrm{U}-\mathrm{Cl}(1)=2.678(2), \mathrm{U}-\mathrm{Cl}(2)=2 \cdot 670(2) \AA]$ and may be a manifestation of slightly different hydro-gen-bonding environments. The anion parameters fall within the range found for other uranyltetrachloride compounds (Rogers, Kurihara \& Benning, 1987, and references therein).

We thank the donors to the Petroleum Research Fund administered by the American Chemical Society for support of this work and the NSF Chemical Instrumentation Program for funds used to purchase the diffractometer. This work was presented at the XIV Congress and General Assembly of the International Union of Crystallography, Perth, Australia (Rogers, 1987; Benning \& Rogers, 1987). Support for atten-
dance at this meeting is gratefully acknowledged from the US Committee on Crystallography and Northern Illinois University's Department of Chemistry, College of Liberal Arts \& Sciences, Office of Sponsored Projects, and Graduate School.

References

Benning, M. M. \& Rogers, R. D. (1987). Acta Cryst. A43, C181. Boer, F. P., Neuman, M. A., van Remoortere, F. P. \& Steiner, E. C. (1974). Inorg. Chem. 13, 2826-2833.

International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72, 99, 149. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Mason, E. \& Eick, H. A. (1982). Acta Cryst. B38, 1821-1825.
Moody, D. C. \& Ryan, R. R. (1979). Cryst. Struct. Commun. 8, 933-936.
Remoortere, f. P. van \& Boer, F. P. (1974). Inorg. Chem. 13, 2071-2076.
Rogers, R. D. (1987). Acta Cryst. A43, C 181.
Rogers, R. D., Kurihara, L. K. \& Benning, M. M. (1987). Inorg. Chem. 26, 4346-4352.
Rogers, R. D. \& Voss, E. J. (1987). Inorg. Chim. Acta, 133, 181-187.
Rogers, R. D., Voss, E. J. \& Etzenhouser, R. E. (1987). Inorg. Chem. In the press.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1988). C44, 641-644

Synthesis and Structure of Thorium Chloride-1,4,7,10,13-Pentaoxacyclopentadecane-Water-Methanol-Acetonitrile (1/1/2/2/1), $\left[\mathrm{ThCl}_{4}(\mathbf{O H M e})_{2}\left(\mathrm{OH}_{2}\right)_{2}\right] .15-\mathrm{Crown}-5 . \mathrm{CH}_{3} \mathrm{CN}^{*}$

By Robin D. Rogers \dagger and Matthew M. Benning
Department of Chemistry, Northern Illinois University, DeKalb, IL 60115, USA

(Received 29 October 1987; accepted 21 December 1987)

Abstract. Diaquatetrachlorobis(methanol)thorium(IV) -15 -crown-5-acetonitrile, $\quad\left[\mathrm{ThCl}_{4}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\left(\mathrm{OH}_{2}\right)_{2}\right]$.$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{5} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}, \quad M_{r}=735 \cdot 3$, monoclinic, $P 2_{1} / n$, $a=8.686$ (1), $\quad b=18.620$ (2),$\quad c=16.043$ (3) \AA, $\beta=99.56(1)^{\circ}, \quad V=2558 \AA^{3}, \quad Z=4, \quad D_{x}=1.91$ $\mathrm{g} \mathrm{cm}^{-3}, \quad \lambda($ Мо $K \alpha)=0.71073 \AA, \quad \mu=59.9 \mathrm{~cm}^{-1}$, $F(000)=1424, \quad T=123 \mathrm{~K}, \quad R=0.045$ for 3387 independent observed $\left[F_{o} \geq 5 \sigma\left(F_{o}\right)\right.$] reflections. The $\mathrm{Th}^{\mathrm{IV}}$ ion is eight-coordinate with approximate dodecahedral geometry. The four Cl atoms occupy A sites $[\mathrm{Th}-\mathrm{Cl}$ average $=2.710(7) \AA$] with the remaining B sites occupied by two water molecules [$\mathrm{Th}-\mathrm{O}$ average $=2.527$ (4) \AA] and two methanol groups [$\mathrm{Th}-\mathrm{O}$ average $=2.562(3) \AA$]. The water and methanol groups are hydrogen-bonded to symmetryrelated crown-ether molecules forming polymeric chains. One O atom of the crown molecule accepts two hydrogen bonds which has an interesting effect on this molecule's conformation. The acetonitrile molecule has close contacts suggesting hydrogen bonds with two of the Cl atoms from different asymmetric units, thus bridging the polymeric chains.

Introduction. In our investigation into f-element/crownether complexation we have tried to find clues to the effects of such variables as metal-ion size, crown-

[^2]0108-2701/88/040641-04\$03.00
ether-cavity size, crown-ether conformation, anion, solvent, conditions of reaction, and method of crystallization on the actual complexation of the crown ether directly to the metal ion. Since a study of various metal-ion sizes in the actinide series is difficult for us to accomplish limited to thorium and uranium, we have concentrated on investigations of changing the anion and solvent for these metals. Although examples of crown ethers coordinated directly to uranium have been reported (see, for example, de Villardi, Charpin, Costes, Folcher, Plurien, Rigny \& de Rango, 1978; Navaza, Villain \& Charpin, 1984; Dejean, Charpin, Folcher, Rigny, Navaza \& Tsoucaris, 1987), we have only managed to crystallize second-sphere hydrogen-bonded complexes such as $\left[\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}\left(\mathrm{OH}_{2}\right)_{3}\right] .18$-crown- 6 (Rogers, Kurihara \& Benning, 1987a), [ThCl 4^{-} $(\mathrm{OHEt})_{3}\left(\mathrm{OH}_{2}\right)$. 18 -crown- $6 . \mathrm{H}_{2} \mathrm{O}$ (Rogers, Kurihara \& Benning, 1988), $\left[\mathrm{UO}_{2}\left(\mathrm{OH}_{2}\right)_{5}\right]\left(\mathrm{ClO}_{4}\right)_{2} .2(18$-crown6). $\mathrm{H}_{2} \mathrm{O} \cdot \mathrm{CH}_{3} \mathrm{CN}$, and $\left[\mathrm{UO}_{2}\left(\mathrm{OH}_{2}\right)_{5}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 3(15$-crown5). $\mathrm{CH}_{3} \mathrm{CN}$ (Rogers, Kurihara \& Benning, 1987b). The isolation and structural characterization of the title complex gives us this opportunity to compare the effects of methanol versus ethanol in the primary coordination sphere of similar complexes $-\left[\mathrm{ThCl}_{4}\right.$ $\left.(\mathrm{OHMe})_{2}\left(\mathrm{OH}_{2}\right)_{2}\right] .15$-crown-5. $\mathrm{CH}_{3} \mathrm{CN}$ and $\left[\mathrm{ThCl}_{4}\right.$ $\left.(\mathrm{OHEt})_{3}\left(\mathrm{OH}_{2}\right)\right] .18$-crown- $6 . \mathrm{H}_{2} \mathrm{O}$.

Experimental. Under $\mathrm{Ar}, 10 \mathrm{mmol}$ of 15 -crown- 5 in 25 mL of a $3: 1$ mixture of acetonitrile:methanol was added to a stirring solution of 10 mmol of $\mathrm{ThCl}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$ © 1988 International Union of Crystallography

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates, torsion angles and least-squares-planes results have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44637 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: *f-Element/Crown Ether Complexes. 19. Part 18: Rogers (1988).
 \dagger To whom correspondence should be addressed.

